A Publicly Available Annotated Corpus for Supervised Email Summarization
نویسندگان
چکیده
Annotated email corpora are necessary for evaluation and training of machine learning summarization techniques. The scarcity of corpora has been a limiting factor for research in this field. We describe our process of creating a new annotated email thread corpus that will be made publicly available. We present the trade-offs of the different annotation methods that could be used.
منابع مشابه
Domain Adaptation to Summarize Human Conversations
We are interested in improving the summarization of conversations by using domain adaptation. Since very few email corpora have been annotated for summarization purposes, we attempt to leverage the labeled data available in the multiparty meetings domain for the summarization of email threads. In this paper, we compare several approaches to supervised domain adaptation using out-ofdomain labele...
متن کاملCorpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملSemi-supervised extractive speech summarization via co-training algorithm
Supervised methods for extractive speech summarization require a large training set. Summary annotation is often expensive and time consuming. In this paper, we exploit semi-supervised approaches to leverage unlabeled data. In particular, we investigate co-training for the task of extractive meeting summarization. Compared with text summarization, speech summarization task has its unique charac...
متن کاملBuilding a Dataset for Summarization and Keyword Extraction from Emails
This paper introduces a new email dataset, consisting of both single and thread emails, manually annotated with summaries and keywords. A total of 349 emails and threads have been annotated. The dataset is our first step toward developing automatic methods for summarization and keyword extraction from emails. We describe the email corpus, along with the annotation interface, annotator guideline...
متن کاملMultilingual and cross-domain temporal tagging
Extraction and normalization of temporal expressions from documents are important steps towards deep text understanding and a prerequisite for many NLP tasks such as information extraction, question answering, and document summarization. There are different ways to express (the same) temporal information in documents. However, after identifying temporal expressions, they can be normalized accor...
متن کامل